How to Solve One-Step Dimensional Analysis Problems

Science \& Engineering Practices: 6.S.1A. 4 One-Step Dimensional Analysis Problems

Analyze and interpret data from informational texts, observations, measurements, or investigations using a range of methods (such as tabulation, graphing, or statistical analysis) to (1) reveal patterns and construct meaning or (2) support hypotheses, explanations, claims, or designs.

How to Solve One-Step
 Dimensional Analysis Problems

Conversion Factors	
$1 \mathrm{~L}=1000 \mathrm{~mL}$	365 days $=1 \mathrm{yr}$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	7 days = 1 week
$1 \mathrm{~kg}=1000 \mathrm{~g}$	52 weeks $=1 \mathrm{yr}$
$1 \mathrm{~kg}=1,000,000 \mathrm{mg}$	$1 \mathrm{~min}=60 \mathrm{sec}$
$1 \mathrm{~km}=1000 \mathrm{~m}$	$1 \mathrm{hr}=60 \mathrm{~min}$
$1 \mathrm{~m}=100 \mathrm{~cm}$	$24 \mathrm{hrs}=1$ day

Steps to Dimensional Analysis

- Step 1: Write out your problem.
- Step 2: Write all conversion factors as fractions.
- Step 3: Include all units with all numbers.
- Step 4: Arrange conversion factors, so that units cancel diagonally (what goes up, must come down).
- Step 5: Multiply the numerators (top numbers).
- Step 6: Multiply the denominators (bottom numbers).
- Step 7: Divide the final numerator by the denominator.

How to Solve One-Step Dimensional Analysis Problems

Sample Question:

How many mL are there in a 15 L container?

Steps to Dimensional Analysis

- Step 1: Write out your problem.
- Step 2: Write all conversion factors as fractions.
- Step 3: Include all units with all numbers.
- Step 4: Arrange conversion factors, so that units cancel diagonally (what goes up, must come down).

$15 \mathrm{~L}=\ldots \mathrm{mL}$

- Step 5: Multiply the numerators (top numbers).
- Step 6: Multiply the denominators (bottom numbers).
- Step 7: Divide the final numerator by the denominator.

15 L $\cdot 1000 \mathrm{~mL}=15,000 \mathrm{~mL}$
 1 1L
 Conversion

How to Solve One-Step Dimensional Analysis Problems

\#1 How many meters will a person run during a 10 kilometer race?

Steps to Dimensional Analysis

- Step 1: Write out your problem.
- Step 2: Write all conversion factors as fractions.
- Step 3: Include all units with all numbers.
- Step 4: Arrange conversion factors, so that units cancel diagonally (what goes up, must come down).
- Step 5: Multiply the numerators (top numbers).
- Step 6: Multiply the denominators (bottom numbers).
- Step 7: Divide the final numerator by the denominator.

> Conversion
> $1000 \mathrm{~m}=1 \mathrm{~km}$

How to Solve One-Step Dimensional Analysis Problems

\#2 Charlie drove rode his bike 320 meters to the grocery store. How many kilometers did he bike?

Steps to Dimensional Analysis

- Step 1: Write out your problem.
- Step 2: Write all conversion factors as fractions.
- Step 3: Include all units with all numbers.
- Step 4: Arrange conversion factors, so that units cancel diagonally (what goes up, must come down).
- Step 5: Multiply the numerators (top numbers).
- Step 6: Multiply the denominators (bottom numbers).
- Step 7: Divide the final numerator by the denominator.

Conversion

$1000 \mathrm{~m}=\mathbf{1} \mathbf{~ k m}$

How to Solve One-Step Dimensional Analysis Problems

\#3 How many cubic centimeters are in a 50 mL

Steps to Dimensional Analysis

- Step 1: Write out your problem.
- Step 2: Write all conversion factors as fractions.
- Step 3: Include all units with all numbers.
- Step 4: Arrange conversion factors, so that units cancel diagonally (what goes up, must come down).
- Step 5: Multiply the numerators (top numbers).
- Step 6: Multiply the denominators (bottom numbers).
- Step 7: Divide the final numerator by the denominator.

How to Solve One-Step Dimensional Analysis Problems

\#4 The average American student is in class 330 minutes/day. How many hours/day is this?

Steps to Dimensional Analysis

- Step 1: Write out your problem.
- Step 2: Write all conversion factors as fractions.
- Step 3: Include all units with all numbers.
- Step 4: Arrange conversion factors, so that units cancel diagonally (what goes up, must come down).
- Step 5: Multiply the numerators (top numbers).
- Step 6: Multiply the denominators (bottom numbers).
- Step 7: Divide the final numerator by the denominator.

Conversion
$1 \mathrm{hr}=60 \mathrm{~min}$

How to Solve One-Step Dimensional Analysis Problems

\#5 How many seconds are there in 75 minutes?

Steps to Dimensional Analysis

- Step 1: Write out your problem.
- Step 2: Write all conversion factors as fractions.
- Step 3: Include all units with all numbers.
- Step 4: Arrange conversion factors, so that units cancel diagonally (what goes up, must come down).
- Step 5: Multiply the numerators (top numbers).
- Step 6: Multiply the denominators (bottom numbers).
- Step 7: Divide the final numerator by the denominator.

Conversion
$1 \mathbf{m i n}=60$ sec

How to Solve One-Step Dimensional Analysis Problems

\#6 Pepsi puts 355 ml of pop in a can. How many liters is this?

Steps to Dimensional Analysis

- Step 1: Write out your problem.
- Step 2: Write all conversion factors as fractions.
- Step 3: Include all units with all numbers.
- Step 4: Arrange conversion factors, so that units cancel diagonally (what goes up, must come down).
- Step 5: Multiply the numerators (top numbers).
- Step 6: Multiply the denominators (bottom numbers).
- Step 7: Divide the final numerator by the denominator.

How to Solve One-Step Dimensional Analysis Problems

\#7 How many hours are in 180.0 days?

Steps to Dimensional Analysis

- Step 1: Write out your problem.
- Step 2: Write all conversion factors as fractions.
- Step 3: Include all units with all numbers.
- Step 4: Arrange conversion factors, so that units cancel diagonally (what goes up, must come down).
- Step 5: Multiply the numerators (top numbers).
- Step 6: Multiply the denominators (bottom numbers).
- Step 7: Divide the final numerator by the denominator.

Conversion
$24 \mathrm{hrs}=1$ day

How to Solve One-Step Dimensional Analysis Problems

\#8 The distance from Myrtle Beach to Loris is $160,934 \mathrm{~cm}$. What is the distance in m ?

Steps to Dimensional Analysis

- Step 1: Write out your problem.
- Step 2: Write all conversion factors as fractions.
- Step 3: Include all units with all numbers.
- Step 4: Arrange conversion factors, so that units cancel diagonally (what goes up, must come down).
- Step 5: Multiply the numerators (top numbers).
- Step 6: Multiply the denominators (bottom numbers).
- Step 7: Divide the final numerator by the denominator.

How to Solve One-Step Dimensional Analysis Problems

\#9 During the previous year, Zach's weather station measured 91 cm of rain. Express this amount in m .

Steps to Dimensional Analysis

- Step 1: Write out your problem.
- Step 2: Write all conversion factors as fractions.
- Step 3: Include all units with all numbers.
- Step 4: Arrange conversion factors, so that units cancel diagonally (what goes up, must come down).
- Step 5: Multiply the numerators (top numbers).
- Step 6: Multiply the denominators (bottom numbers).
- Step 7: Divide the final numerator by the denominator.

How to Solve One-Step Dimensional Analysis Problems

\#10 John discovered that the further he pulled back on a rubber band and puck, the farther forward the puck would go. He recorded a distance of 3 meters after releasing the puck. How many cm did it travel?
(Don't let the wording confuse you. What is the only information you need?)

Steps to Dimensional Analysis

- Step 1: Write out your problem.
- Step 2: Write all conversion factors as fractions.
- Step 3: Include all units with all numbers.
- Step 4: Arrange conversion factors, so that units cancel diagonally (what goes up, must come down).
- Step 5: Multiply the numerators (top numbers).
- Step 6: Multiply the denominators (bottom numbers).
- Step 7: Divide the final numerator by the denominator.

Conversion
$1 \mathrm{~m}=100 \mathrm{~cm}$

