Name: \qquad
Class: \qquad Date: \qquad

Student Sheet 8.1a How Much Work Was Done?

Directions Complete this sheet as directed in the Procedure for Inquiry 8.1.
Table 1 Calculating the Work Done on Different Surfaces

| Surface | $\begin{array}{c}\text { Effort Force } \\ \text { (N) }\end{array}$ | $\begin{array}{c}\text { Effort Distance } \\ \text { (m) }\end{array}$ | Work Done |
| :--- | :--- | :--- | :--- |$]$| Tabletop |
| :--- |
| Waxed paper |
| Paper towel |
| Fine sandpaper |
| Coarse sandpaper |

1. Over which surface did you do the most work when you pulled the block?
2. Over which surface did you do the least work when you pulled the block?

Name: \qquad
Class: \qquad Date: \qquad

Student Sheet 8.1b
 Thinking About Work and Force

Directions Answer the questions in the spaces provided.

1. What force are you working against when you lift a backpack?
2. In which of the following cases is work, as defined by scientists, being done?
A. Someone tries to move a piano, but the piano won't budge.
B. A tow truck is pulling a car slowly along the street.
C. A student is studying for a mathematics exam.
D. A student is pushing a grocery cart around the store.
E. Another student is standing in line holding a $12-\mathrm{N}$ bag of potatoes.
F. A student pushes against the school building.
3. If you lift a bag that weighs 15 N a distance of 2 m , how much work have you done?
4. If a cement block that weighs 50 N must be raised to a height of 5 m , how much work must be done on the block?
5. How much work do you do when you climb a flight of stairs 4 m high? Remember to use your weight in newtons ($1 \mathrm{lb}=4.45 \mathrm{~N}$).

Name: \qquad
Class: \qquad Date: \qquad

Student Sheet 8.2 Lifting a Load

Directions Answer the questions as directed in the Procedure for Inquiry 8.2.

1. Motor force with three batteries in series: \qquad
2. Work done by a motor when it lifts a load $10.0 \mathrm{~cm}(0.10 \mathrm{~m})$

Work $=$ \qquad \times \qquad = \qquad
3. Weight of two washers: \qquad
4. Work to raise two washers $10.0 \mathrm{~cm}(0.10 \mathrm{~m})$:

Work $=$ \qquad \times \qquad
\qquad
5. Your estimate of the sled's weight:
6. Sled's actual weight:
7. Work to lift sled $10.0 \mathrm{~cm}(0.10 \mathrm{~m})$:

Work $=$ \qquad \times \qquad $=$ \qquad

