Name:	
Class:	Date:

Student Sheet 8.1a How Much Work Was Done?

Directions Complete this sheet as directed in the Procedure for Inquiry 8.1.

Table 1 Calculating the Work Done on Different Surfaces

Surface	Effort Force (N)	Effort Distance (m)	Work Done
Tabletop			
Waxed paper			
Paper towel			
Fine sandpaper			
Coarse sandpaper			

- 1. Over which surface did you do the most work when you pulled the block?
- 2. Over which surface did you do the least work when you pulled the block?

Name:	
Class:	Date:

Student Sheet 8.1b Thinking About Work and Force

Directions Answer the questions in the spaces provided.

 What force are you working against when you lift a backp
--

- 2. In which of the following cases is work, as defined by scientists, being done?
 - A. Someone tries to move a piano, but the piano won't budge.
 - B. A tow truck is pulling a car slowly along the street.
 - C. A student is studying for a mathematics exam.
 - D. A student is pushing a grocery cart around the store.
 - E. Another student is standing in line holding a 12-N bag of potatoes.
 - F. A student pushes against the school building.
- 3. If you lift a bag that weighs 15 N a distance of 2 m, how much work have you done?
- 4. If a cement block that weighs 50 N must be raised to a height of 5 m, how much work must be done on the block?
- 5. How much work do you do when you climb a flight of stairs 4 m high? Remember to use your weight in newtons (1 lb = 4.45 N).

	Class:	Date:	
Student Sheet 8.2 Lifting a Load			
Directions Answer the questions as directed in	the Procedure for 1	Inquiry 8.2.	
1. Motor force with three batteries in series:			
2. Work done by a motor when it lifts a load 10	0.0 cm (0.10 m)		
Work =×	=		
3. Weight of two washers:			
4. Work to raise two washers 10.0 cm (0.10 m)	:		
Work =×	=		
5. Your estimate of the sled's weight:			
6. Sled's actual weight:			
7. Work to lift sled 10.0 cm (0.10 m):			
Work = ×	=		

Name:_____