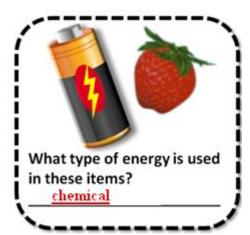

Conservation of Energy

Energy can be in many different <u>forms</u>. Students should know sources and properties of the following forms of energy:

<u>Heat energy</u> is the transfer of <u>thermal</u> energy (energy that is associated with the <u>motion</u> of the particles of a substance).

- Remember that all <u>matter</u> is made up of <u>particles</u> too small to be seen (5th grade).
- As heat energy is added to a substance, the <u>temperature</u> goes <u>up</u> indicating that the particles are moving faster. The faster the particles move, the higher the temperature.
- Material (wood, candle wax) that is burning, the Sun, and electricity are sources of heat energy.

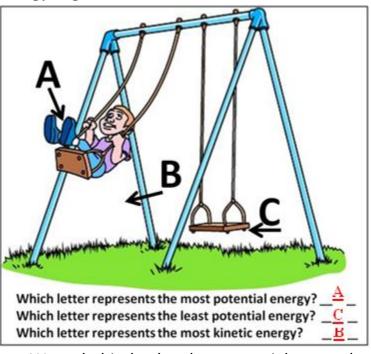


<u>Solar energy</u> is the energy from the <u>Sun</u>, which provides heat and light energy for Earth.

- Solar cells can be used to convert solar energy to electrical energy.
- Green <u>plants</u> use solar energy during <u>photosynthesis</u> to

produce sugar, which contains stored chemical energy.

• Most of the energy that we use on Earth originally came from the Sun.



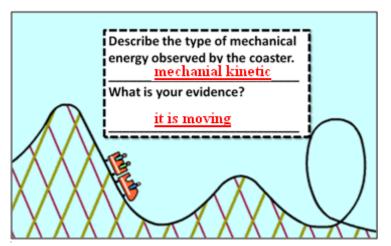
energy is the energy due to
(kinetic) and position
an object.

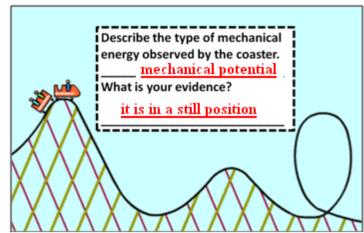
- When objects are set in a position where they can motion, they have energy.
- Mechanical Potential
 Potential energy is stored
 Mechanical potential energy
 position of an object. A

Chemical energy is energy **stored** in particles of matter.

- Chemical energy can be released, for example in batteries or sugar/food, when these particles react to form new substances. Electrical energy is the energy flowing in an electric circuit.
- Sources of electrical energy include: stored chemical energy in batteries; solar energy in solar cells; fuels or hydroelectric energy in generators.

Mechanical the motion (potential) of

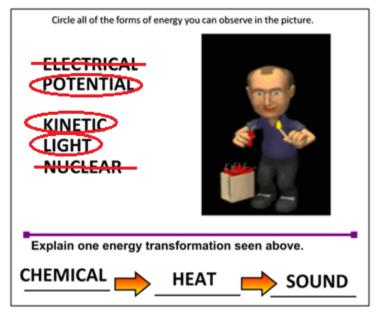

motion or are in be set in mechanical

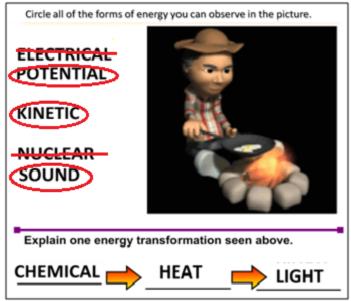

<u>energy</u>:

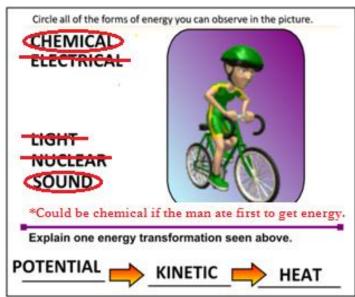
energy.
is related to the stretched

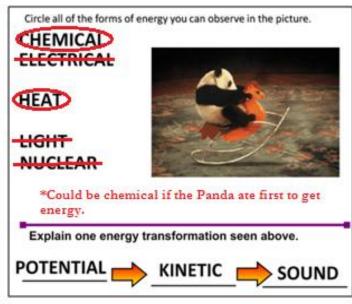
rubber band has potential energy. Water behind a dam has potential energy because it can fall down the dam.

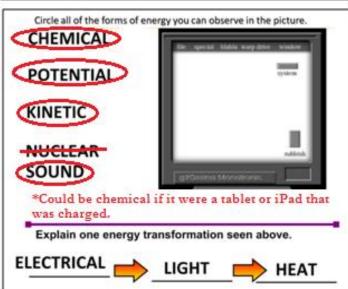
Mechanical Kinetic energy: Kinetic energy is the energy an object has due to its motion.

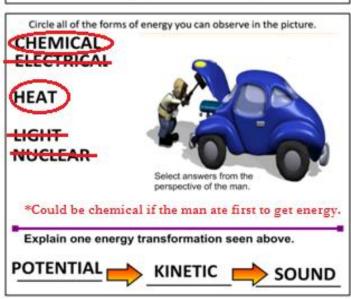

Mechanical kinetic energy <u>increases</u> as an object moves <u>faster</u>. A moving car has kinetic energy.
 If the car moves faster, it has more kinetic energy.

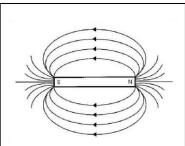

<u>The Law of Conservation of Energy-</u> states that energy cannot be <u>created</u> or <u>destroyed</u>. It may be <u>transformed</u> from one form into another, but the <u>total</u> amount of energy <u>never changes</u>.


Examples of potential and kinetic mechanical transformations might include:


- When water is behind a dam, it has <u>potential</u> energy. The potential energy of the water changes to <u>kinetic</u> energy in the <u>movement</u> of the water as it flows over the dam.
- When a rubber band is stretched, kinetic energy is transformed into potential energy. When a
 stretched rubber band is released its <u>potential</u> energy is transformed into <u>kinetic</u> energy as the
 rubber band moves.
- When a book is lifted to a shelf, kinetic energy is transformed into potential energy.
- If the book falls off the shelf the **potential** energy is transformed to **kinetic** energy.


Example	Energy Transformations
Book falling	Kinetic → sound, heat
Water moving over dam	Kinetic → electrical (via generator
Green plants	Solar → stored chemical
Respiration (eating food)	Chemical → kinetic (moving)
Burning carbon-based fuel	Chemical → heat energy, electrical
Electrical circuit (using an outlet)	Electrical → mechanical, heat, sound and light





Magnetism is the force of **attraction** or **repulsion** of magnetic materials.

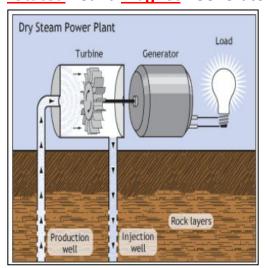
Surrounding a magnet is a <u>magnetic field</u> that applies a force, a push or pull, without actually touching an object.

An <u>electric current</u> flowing through a wire wrapped around an <u>iron core</u>

forms a magnet.

A coil of wire **spinning** around a **magnet** or a magnet spinning around a coil of

wire can form an electric current.


Examples of how magnetism and electricity are interrelated can be demonstrated by the following devices:

 An <u>electromagnet</u> is formed when a <u>wire</u> in an electric circuit is wrapped around an <u>iron core</u> producing a magnetic field. The

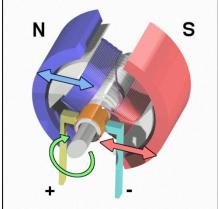
magnet that results loses its magnetism if the electric current stops flowing.

 A <u>generator produces</u> an <u>electric current</u> when a coil of wire wrapped around an iron core is rotated near a <u>magnet</u>. Generators at power plants produce electric energy for our homes.

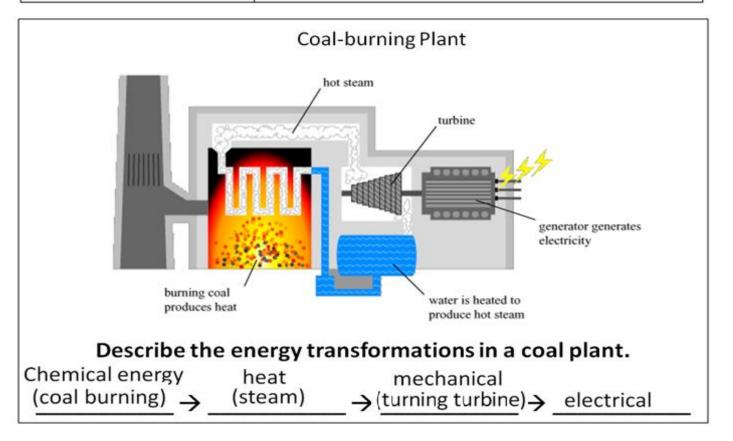
- A generator contains coils of wire that are stationary, and rotating magnets are rotated by <u>turbines</u>. Turbines are huge <u>wheels</u> that rotate when pushed by <u>water</u>, <u>wind</u>, or <u>steam</u>.
- Thus <u>mechanical</u> energy is changed to <u>electrical</u> energy by a <u>generator</u>. Smaller generators may be powered by <u>gasoline</u>.
- An <u>electric motor</u> changes <u>electrical</u> energy to <u>mechanical</u> energy. It contains an <u>electromagnet</u> that rotates between the poles of a magnet.
- The coil of the electromagnet is connected to a battery or other source of electric current.

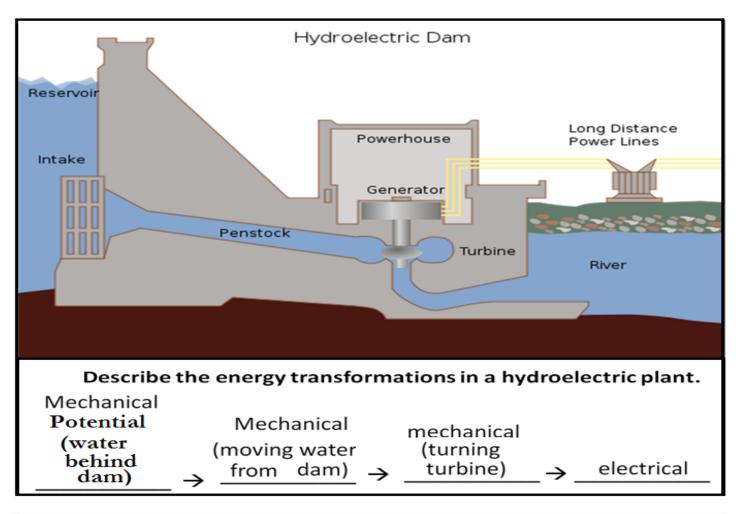
When an electric current flows through the wire in the electromagnet, a <u>magnetic field</u> is produced in the coil.

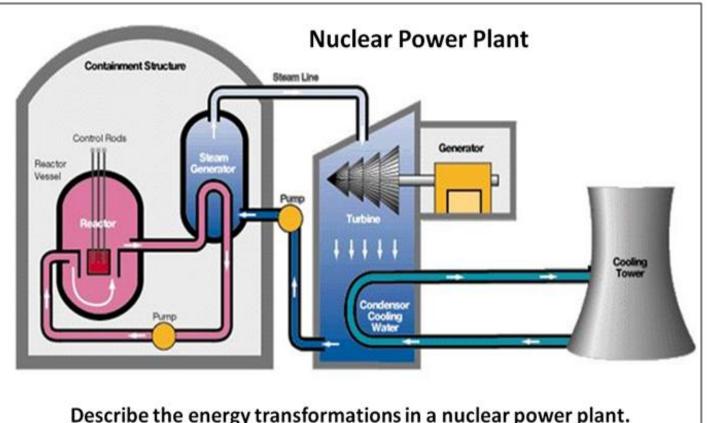
- Like poles of the magnets <u>repel</u> and unlike poles of the magnets <u>attract</u>.
- This causes the coil to <u>rotate</u> and thus changes <u>electrical</u> energy to <u>mechanical</u> energy.
- This rotating coil of wire can be attached to a shaft and a blade in an electric fan.


<u>Electrical</u> energy can be transformed to light, sound, heat, and mechanical motion in an electric circuit.

An electric <u>circuit</u> contains a source of <u>electrical</u> energy, a <u>conductor</u> of the electrical energy (<u>wire</u>) connected to the energy source, and a device that uses and transforms the electrical energy.


Source	Energy comes from
Battery	Stored chemical energy
Solar cell	Light energy from sun
Electrical outlets	Power Plants Chemical energy (burning coal) Nuclear energy Geothermal energy


All these components must be connected in a complete, unbroken path in order for energy transformations to occur.


The electrical energy in circuits may come from many sources including:

Devices used in electrical circuit	Energy Transformations
light, lightbulb	Chemical (battery) → electrical → light & heat
sound; buzzer, radio, t.v.	Chemical (battery) → electrical → sound
lamp	Electrical (outlet) → heat & light
held hand fan motor	Chemical (battery) → electrical → mechanical
Generators Coal-burning Plant	Chemical energy (coal burning) → heat (steam) → mechanical (turning turbine) → electrical
Generators Hydroelectric Plant	Mechanical energy (moving water from dam) → mechanical (turning turbine) → electrical
Generators Nuclear Plant	Heat (steam) → mechanical (turning turbine) → electrical

reaction → Heat (steam) → turbine) → electrical

Nuclear

mechanical

(turning

Ap²

- a fishing
- a !