
Conservation of Energy

Energy can be in many different <u>forms</u>. Students should know sources and properties of the following forms of energy:

Heat energy is the transfer of thermal energy (energy that is associated with the motion of the particles of a substance).

- Remember that all <u>matter</u> is made up of <u>particles</u> too small to be seen (5th grade).
- As heat energy is added to a substance, the <u>temperature</u> goes <u>up</u> indicating that the particles are <u>moving faster</u>. The faster the particles move, the higher the temperature.
- Material (wood, candle wax) that is burning, the Sun, and electricity are sources of heat energy.

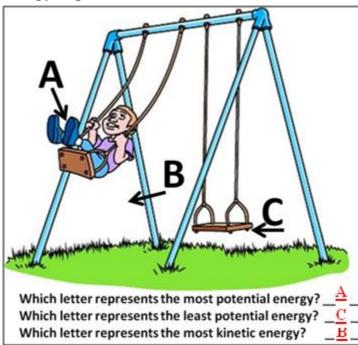
<u>Solar energy</u> is the energy from the <u>Sun</u>, which provides heat and light energy for Earth.

• <u>Solar cells</u> can be used to convert solar energy to <u>electrical</u> energy.

Green <u>plants</u> use solar energy during <u>photosynthesis</u> to

produce sugar, which contains stored chemical energy.

• Most of the energy that we use on Earth originally came from the Sun.


<u>energy</u> is the energy due to (kinetic) and position an object.

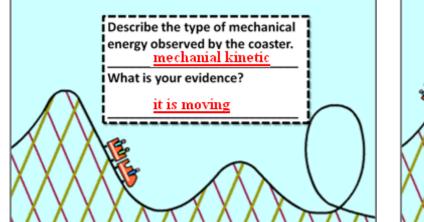
- When objects are set in a position where they can motion, they have energy.
- Mechanical Potential Potential energy is <u>stored</u> Mechanical potential energy <u>position</u> of an object. A

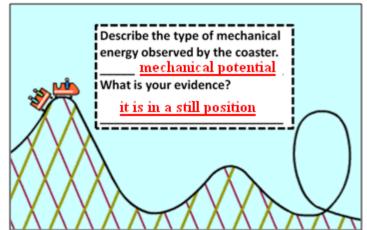
Chemical energy is energy stored in particles of matter.

• Chemical energy can be released, for example in <u>batteries</u> or <u>sugar/food</u>, when these particles react to form new substances. <u>Electrical energy</u> is the energy flowing in an <u>electric circuit</u>.

• Sources of electrical energy include: stored chemical energy in batteries; solar energy in solar cells; fuels or hydroelectric energy in generators.

<u>Mechanical</u> the motion <u>(potential)</u> of

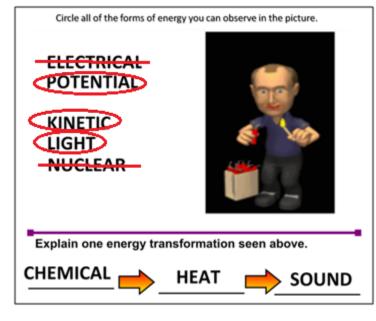

motion or are in be set in mechanical

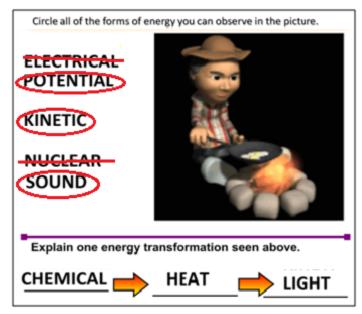

energy:

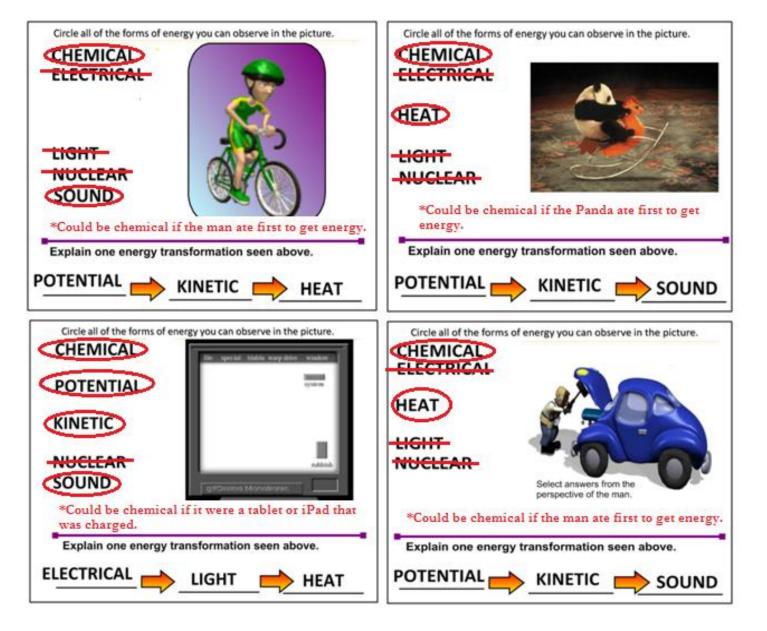
energy. is related to the stretched

rubber band has potential energy. Water behind a dam has potential energy because it can fall down the dam.

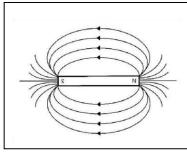
• Mechanical Kinetic energy: Kinetic energy is the energy an object has due to its motion.




Mechanical kinetic energy <u>increases</u> as an object moves <u>faster</u>. A moving car has kinetic energy.
 If the car moves faster, it has more kinetic energy.


<u>The Law of Conservation of Energy</u>- states that energy cannot be <u>created</u> or <u>destroyed</u>. It may be <u>transformed</u> from one form into another, but the <u>total</u> amount of energy <u>never changes</u>. Examples of potential and kinetic mechanical transformations might include:

- When water is behind a dam, it has **potential** energy. The potential energy of the water changes to **kinetic** energy in the **movement** of the water as it flows over the dam.
- When a rubber band is stretched, kinetic energy is transformed into potential energy. When a stretched rubber band is released its <u>potential</u> energy is transformed into <u>kinetic</u> energy as the rubber band moves.
- When a book is lifted to a shelf, kinetic energy is transformed into potential energy.
- If the book falls off the shelf the **potential** energy is transformed to kinetic energy.


Example	Energy Transformations
Book falling	Kinetic \rightarrow sound, heat
Water moving over dam	Kinetic \rightarrow electrical (via generator
Green plants	Solar \rightarrow stored chemical
Respiration (eating food)	Chemical \rightarrow kinetic (moving)
Burning carbon-based fuel	Chemical \rightarrow heat energy, electrical
Electrical circuit (using an outlet)	Electrical \rightarrow mechanical, heat, sound and light

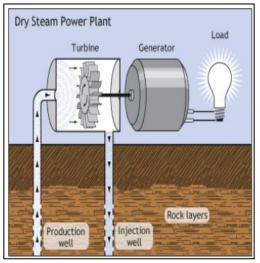
Magnetism is the force of attraction or repulsion of magnetic materials.

Surrounding a magnet is a <u>magnetic field</u> that applies a force, a push or pull, without actually touching an object.

An <u>electric current</u> flowing through a wire wrapped around an <u>iron core</u> forms a <u>magnet</u>.

A coil of wire <u>spinning</u> around a <u>magnet</u> or a magnet spinning around a coil of

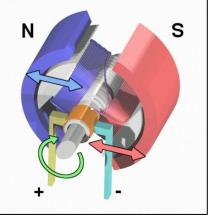
wire can form an <u>electric current</u>.


Examples of how magnetism and electricity are interrelated can be demonstrated by the following devices:

 An <u>electromagnet</u> is formed when a <u>wire</u> in an electric circuit is wrapped around an <u>iron core</u> producing a magnetic field. The

magnet that results loses its magnetism if the electric current stops flowing.

 A <u>generator produces</u> an <u>electric current</u> when a coil of wire wrapped around an iron core is <u>rotated</u> near a <u>magnet</u>. Generators at power plants produce electric energy for our homes.


• A generator contains coils of wire that are stationary, and rotating magnets are rotated by <u>turbines</u>. Turbines are huge <u>wheels</u> that rotate when pushed by <u>water</u>, <u>wind</u>, or <u>steam</u>.

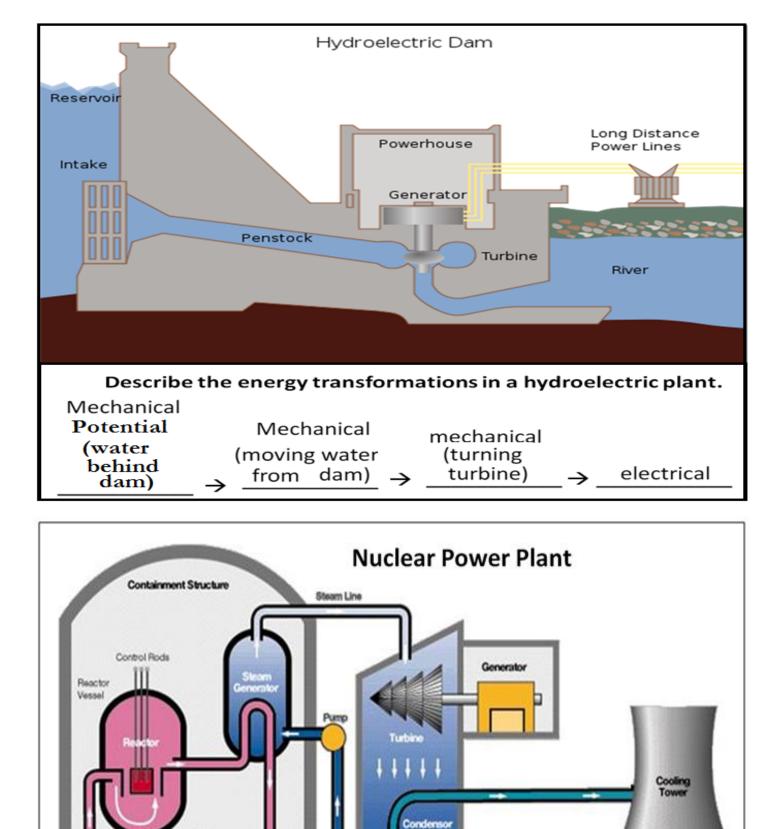
• Thus <u>mechanical</u> energy is changed to <u>electrical</u> energy by a <u>generator</u>. Smaller generators may be powered by <u>gasoline</u>.

• An <u>electric motor</u> changes <u>electrical</u> energy to <u>mechanical</u> energy. It contains an <u>electromagnet</u> that rotates between the poles of a magnet.

- The coil of the electromagnet is connected to a <u>battery</u> or other source of <u>electric current</u>.
- When an electric current flows through the wire in the electromagnet, a <u>magnetic field</u> is produced in the coil.
- Like poles of the magnets <u>repel</u> and unlike poles of the magnets <u>attract</u>.
- This causes the coil to <u>rotate</u> and thus changes <u>electrical</u> energy to <u>mechanical</u> energy.
- This rotating coil of wire can be attached to a shaft and a blade in an electric fan.

Electrical energy can be transformed to light, sound, heat, and mechanical motion in an electric circuit.

An electric <u>circuit</u> contains a source of <u>electrical</u> energy, a <u>conductor</u> of the electrical energy (<u>wire</u>) connected to the energy source, and a device that uses and transforms the electrical energy.


Source	Energy comes from
Battery	Stored chemical energy
Solar cell	Light energy from sun
Electrical outlets	Power Plants Chemical energy (burning coal) Nuclear energy Geothermal energy

All these components must be connected in a complete, unbroken path in order for energy transformations to occur.

The electrical energy in circuits may come from many sources including:

Devices used in electrical circuit	Energy Transformations	
light, lightbulb	Chemical (battery) → electrical → light & heat	
sound; buzzer, radio, t.v.	Chemical (battery) $ ightarrow$ electrical $ ightarrow$ sound	
lamp	Electrical (outlet) $ ightarrow$ heat & light	
held hand fan motor	Chemical (battery) \rightarrow electrical \rightarrow mechanical	
Generators Coal-burning Plant	Chemical energy (coal burning) \rightarrow heat (steam) \rightarrow mechanical (turning turbine) \rightarrow electrical	
Generators Hydroelectric Plant	Mechanical energy (moving water from dam) \rightarrow mechanical (turning turbine) \rightarrow electrical	
Generators Nuclear Plant	Heat (steam) \rightarrow mechanical (turning turbine) \rightarrow electrical	

reaction \rightarrow Heat (steam) \rightarrow turbine) \rightarrow electrical

We will fill this page out later.

8

e

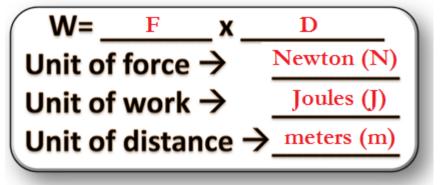
REVIEW MOMENT!

C.circulating currentsA. radiationA.heat transfer throughB. conductionspaceC. convectionB.direct contact

ENERGY & WORK

Energy is a property that enables something to do **work**.

Work means to (1) apply a <u>force</u> to an object over a <u>distance</u>, and (2) the object <u>moves</u> in response to the force. If something has the ability to cause a change in motion, it is has energy.

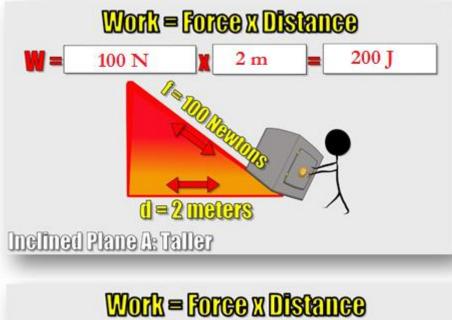

Energy can cause <u>work</u> to be done, so when we see work done, we see evidence of energy.

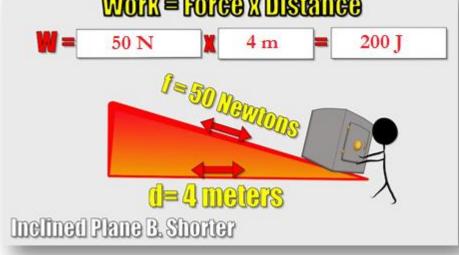
An evidence of energy is when work is being done. For example:

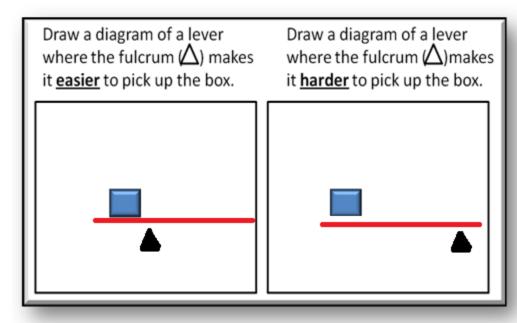
- When a toy car at rest is **pushed**, work is done on the car if it **moves**.
- When a fan is connected to an electric circuit, it moves, so work was done on the fan.
- When an object is lifted, it moves, so work is done on the object.

Directions: Write "yes" if the example demonstrates work is being done or "no" if no work is being done.

Example	Yes/No
Child playing on a swing	Yes
Mother holding a baby	No
Weight lifter holding weights over his head	No
Writing with a pencil	Yes
Thinking about a math problem	No




A <u>spring scale</u> is used to measure <u>force</u>. Force (including weight) is measured in SI units called


newtons (N). SIMPLE MACHINES

- A simple machine is a device that helps <u>reduce</u> the amount of <u>force</u> required to do <u>work</u>. Work is done when a <u>force</u> (effort force) is applied over a <u>distance</u>.
- A simple machine allows the user to apply a <u>smaller force</u> over a <u>larger distance</u> to move an object.
- Simple machines can also change the <u>direction</u> of the force applied.
- If the <u>distance</u> over which the effort <u>force</u> is exerted is <u>increased</u>, the <u>same</u> amount of <u>work</u> can be done with a <u>smaller</u> effort force.
- The design of the simple machines can reduce the amount of force required to do work:

- A <u>lever</u> is a <u>rigid bar</u> or board that is free to move around a <u>fixed</u> point called a <u>fulcrum</u>.
- The fulcrum may be placed at different locations along the bar.
- A lever can be designed to <u>reduce</u> the amount of <u>force</u> required to lift a weight in two ways:

By increasing the distance
from the fulcrum to the point
where the effort force is applied, or
(2) by decreasing the distance the
weight is from the fulcrum.

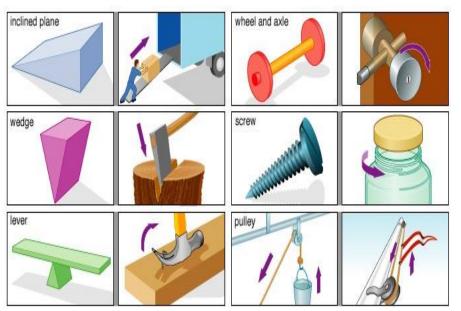
• By increasing the distance the effort force moves relative to the distance the weight moves, a lever can reduce the effort force needed.

• A <u>pulley</u> has a grooved <u>wheel</u> with a <u>rope</u> running along the groove.

Pulleys can change the
 amount and/or the direction of
 the force applied (effort force).

• By arranging the pulleys in such a way as to <u>increase the</u> <u>distance</u> that the effort force moves relative to the distance the weight moves, a pulley can <u>reduce</u> <u>the effort force</u> needed.

• Movable pulleys are used to reduce the effort force.


• A <u>single fixed</u> pulley changes only the <u>direction</u> of the force (you pull down and the weight goes up.)

• An <u>inclined plane</u> is a sloping surface, like a <u>ramp</u>, that reduces the amount of force required to lift an object.

- An inclined plane can be designed to reduce the force needed to lift a weight in two ways: <u>increase</u> the length of the ramp or (2) <u>decrease</u> the height of the ramp.
- By increasing the distance the effort force moves (length of the ramp) relative to the distance the weight is lifted (height of the ramp), an inclined plane can <u>reduce</u> the effort force needed.

COMPOUND/COMPLEX MACHINES

- Levers that have the fulcrum between where the effort force is applied and the weight is located can be found in tools, for example, <u>scissors</u> (two levers working together) and <u>crowbar</u>.
- Levers that have the fulcrum on the end and the effort is applied in the middle to lift a weight on the other end can be found in tools, for example, <u>tweezers</u> (two levers working together) or a <u>broom</u>.
- <u>Levers</u> that have the fulcrum on the end and the effort force are applied on the other end to lift a weight in the middle can be found in tools, for example, a <u>wheelbarrow</u>, or a <u>bottle opener</u>.
- <u>Pulleys</u> that are <u>fixed</u>, meaning that they are attached to a structure, can be found on the top of a <u>flag pole</u> and on <u>window blinds</u>.
- Pulleys that are <u>moveable</u>, meaning that they are not attached to a structure, can be found on construction <u>cranes</u> and as part of a block and tackle system.

• Inclined planes with a sloping surface can be found as <u>ramps</u> on a truck or wheelchair ramp and <u>stairs</u>.

Inclined planes that are wedges, one inclined plane or two back-to-back inclined planes that can move are found as knife blades or nails.

• Inclined planes that are wound around a post or cylinder are called screws. Screws can be found in bolts and jar lids.

Wheel and axles consist of

two circular objects: a <u>central shaft</u>, called an <u>axle</u>, inserted through the middle of a wheel.

• Wheel and axles can be found as <u>door knobs</u>, steering wheels, screwdrivers, <u>gears</u>, and bicycles wheels.

<u>Complex</u> machines, also known as <u>compound</u> machines, consist of <u>two or more</u> simple machines. Examples may include:

• scissors consisting of two levers and two inclined planes (wedges);

- a **fishing pole** consisting of a lever, a wheel and axle and a pulley;
- a <u>bicycle</u> consists of levers (handlebars and handbrakes), wheel and axles (gears, wheels, and pedals), and a number of screws.

Simple Machine	Example
Inclined plane	ramp, escalator, stairs
Lever	broom, screwdriver, see-saw
Pulley	flagpole, block & tackle
Wheel and axle	wheel, doorknob
Screw	screw, lid, soda bottle top
Wedge	axe, knife blade, scissor blades

Write an example of each type of simple machine.