Fast Facts #8 Weather Conditions

Name_____Block__

The interactions between air masses, fronts, and pressure systems result in various weather conditions.

<u>Air masses</u> are huge bodies of air, they are formed over water (humid) or land (dry) in tropical (warm) or polar (cold) regions. We talk about the movement of air masses, so the temperature and humidity conditions within the air masses are important because weather events happen when air masses move.

<u>Fronts</u> are air masses that move and collide with each other, **fronts** form at the **boundaries** between the air masses. Depending upon the air masses involved, a **warm** front, **cold** front, **stationary** front, or **occluded** front can develop.

Type of Front	Warm Front	Cold Front	Stationary Front	Occluded Front	
Description	warm air mass that is moving over cold air mass	colder air mass that slides under a warm air mass	neither the cold air mass or warm air mass is moving at the frontal boundary	a warm air mass is caught between two cooler air masses and is pushed upward	
Weather as the front passes	long periods of precipitation and warmer temperatures	thunderstorms and sometimes tornadoes and cooler temperatures	long periods of precipitation	long periods of precipitation	
Diagram	Warm Cold	Cold	Cold	Cool Many Many Cool	
Symbol					

<u>High Pressure Systems and Low Pressure Systems</u> form when warm air rising or cold air sinking combined with the spinning of Earth causes the air to spin forming high and low pressure regions.

Type of System	High Pressure Systems	Low Pressure Systems
Weather	fair weather (pressure is high and dry)	rainy and/or stormy weather conditions (pressure is low and brings rain or snow)
Circulation	winds circulate clockwise	counterclockwise circulating winds

<u>Storms</u> are severe weather conditions which occur when pressure differences cause fast air movement. Conditions that bring one kind of storm can also cause other kinds of storms in the same area.

Type of Storm	<u>Thunderstorm</u>	<u>Tornado</u>	<u>Hurricane</u>
Description	storm with thunder, lightning, heavy rains and strong winds, form within large cumulonimbus clouds, usually form along a cold front but can form within an air mass	rapidly whirling, funnel-shaped clouds that reaches down from a storm cloud, the very low pressure and strong winds can cause great damage to people and property, form within the fronts where there are strong thunderstorms	a low pressure tropical storm that forms over warm ocean water; winds form a spinning circular pattern around the center, or eye, of the storm; the lower the air pressure at the center, the faster the winds blow toward the center of the storm

Since **weather** is a condition of Earth's atmosphere at **any time**, weather conditions may include fair weather, showers or light rain, humid conditions, clear skies with cold conditions, days of clouds and precipitation, or others that do not necessarily involve storms.

Meteorologists make weather predictions/forecasts from data.

In order to understand the conditions in weather systems and to be able to make weather **forecasts** as precise as possible, weather **data** must be accurately gathered. The **instruments** below are used to gather data. The data must be collected on a **regular basis** over a **period of time** in order analyze and predict **patterns in weather conditions**.

Weather Instruments	Anemometer	Wind Vane (wind sock)	Thermometer	Sling Psychrometer	Barometer	<u>Rain</u> <u>Gauge</u>
Measures	wind speed	wind direction, the direction it comes from	<u>air</u> temperature	<u>relative</u> <u>humidity</u>	<u>air</u> pressure	amount of precipitation
Example		W E	Participated Inchesive desired			
Units of Measurement	mph (miles per hour)	north, south, east ,west	℃ or ℉	percent of water vapor in the air	inches or millibars of mercury	inches or centimeters

Weather maps can help predict weather by indicating high or low pressure systems (isobars), movement of air masses and fronts, or temperature ranges (isotherms). Station models can include information such as cloud cover, temperature, wind speed, wind direction and speed, precipitation, or barometric pressure.

Weather Map Information - Fill out the chart below using your Study Guide - Page 6

round map mornianon i mout mountains ground and ground i ago c											
Precipitation Heavy F		y Fog	og Hail			Rain		Shower	Heavy Freezing Rain	Snow	
Symbol											
Cloud Cover %		0%		10%		25	5%		50%	75%	100%
Symbol											
Wind Speed	1-	-2	9-1	4	21	l - 25	32-3	37	44-49	55-60	67-71
Symbol											

Satellite Images are used for seeing cloud patterns and movement (hurricane clouds and movement).

Radar images can be use to detect cloud cover, rainfall or storm location, intensity and movement, as well as the potential for severe weather and even tornadoes or hurricanes.

Warm air near the surface of the earth rises and then cools; this is a convection current. There are three atmospheric convection areas in the northern hemisphere and three in the southern hemisphere. The areas in the northern hemisphere are:

- Tropical Convection Region begins at the equator and extends about 30 degrees north latitude 0
- Temperate Region extends from about 30 degrees to about 60 degrees north latitude 0
- Polar Regions extends from about 60 degrees to the north pole (which is 90 degrees north latitude)

Convection on a global scale causes global winds which move weather systems and surface ocean currents.

- Global Wind Belts weather systems move in certain directions because of the spinning of the earth
- Land Breezes (blow from the land to sea), Sea Breezes (blow from the sea to the land) these are local winds
- Surface Currents of Earth's oceans circulate warm and cold ocean waters in convection patterns also influence weather and climates of nearby landmasses
- Gulf Stream is warm current water that effects the eastern Atlantic coastline

Climate Zones (tropical, temperate, and polar) exist because of unequal heating of Earth. Since temperature is a major factor in climate zones, climate is related to: convection regions, temperature differences, and warm and cold surface ocean currents.

Global Winds are found in each convection region. The winds appear to curve due to the spinning of the earth (Coriollis effect).

- Trade Winds blow from east to west in the tropical regions moving the warm tropical air in that climate zone
- Prevailing Westerly Winds blow from west to east in the temperate region.
- Changing seasons effect the temperate zone. This causes weather systems in the US to move west to east.
- Tropical Weather Systems like hurricanes move in the direction of the trade winds (east to west).
- The **Polar Winds** blow northeast to west moving cold polar air from the poles to the west.

The Jet Stream is a fast moving ribbon of air that moves around the globe of Earth.

It moves from west to east in the Northern Hemisphere (in the United States). It dips and bends and constantly changes position. Air masses and weather systems in its path are moved along by the fast moving air. The polar jet stream can bring cold air from the north. The subtropical jet stream can bring warm tropical conditions from the south.